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A Search Efficiency of PNAS with RNN-ensemble

In Section 5.3 of the paper, we focused on the performance of MLP-ensemble as
the surrogate model. Here we provide analysis of RNN-ensemble as well.

Fig. 1. Comparing the relative efficiency of PNAS (using RNN-ensemble) with NAS
and random search under the same search space.

B Top Accuracy # PNAS # NAS Speedup (# models) Speedup (# examples)

5 1 0.9161 1160 2222 1.9 5.1
5 5 0.9148 1160 2489 2.1 5.4
5 25 0.9128 1160 2886 2.5 5.7

Table 1. Relative efficiency of PNAS (using RNN-ensemble predictor) and NAS under
the same search space.

? Work done while an intern at Google.
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Again, each method is repeated 5 times to reduce the randomness in neural
architecture search, and both performance mean and the variance are plotted in
Figure 1. A more quantitative breakdown is given in Table 1. We see that PNAS
with RNN-ensemble is about twice as efficient than NAS in terms of number
of models trained and evaluated, and five times as efficient by the number of
examples. Speedup measured by number of examples is greater than speedup
in terms of number of models, because NAS has an additional reranking stage,
that trains the top 250 models for 300 epochs each before picking the best one.

B Searching Cells with More Blocks

Using the MLP-ensemble predictor, we tried to continue the progressive search
beyond cells with 5 blocks, all the way till B = 10. The result of this experiment
is visualized in Figure 2, which extends Figure 4 of the main paper. As can
be seen, PNAS is able to find good performing models over the much larger
search spaces of B > 5. Note that the unconstrained search space size increases
by about 4 orders of magnitude for every B level, reaching ∼ 1033 possible
model configurations at B = 10. This is one of the main advantages of PNAS,
to examine a highly focused search space of arbitrary size progressively. Notice
that the NAS curve for comparison is still for B = 5, and if we search cells with
more blocks using NAS, this curve is likely to go down, because of the growth
in search space.

Fig. 2. Running PNAS (using MLP-ensemble) from cells with 1 block to cells with 10
blocks.

C Intermediate Level PNASNet Models

Our Progressive Neural Architecture Search algorithm explores cells from simple
to complex by growing the number of blocks. We choose B = 5, and indeed the
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best model found in the final level (PNASNet-5; visualized in the left plot of
Figure 1) demonstrates state-of-the-art performance. In this section, however,
we are interested in the best models found in smaller, intermediate levels, namely
b = 1, 2, 3, 4. We call these models PNASNet-{1, 2, 3, 4}.
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Fig. 3. Cell structures used in PNASNet-{1, 2, 3, 4}.

Model B N F Error Params M1 E1 M2 E2 Cost

PNASNet-4 4 4 44 3.50±0.10 3.0M 904 0.9M 0 0 0.8B
PNASNet-3 3 6 32 3.70±0.12 1.8M 648 0.9M 0 0 0.6B
PNASNet-2 2 6 32 3.73±0.09 1.7M 392 0.9M 0 0 0.4B
PNASNet-1 1 6 44 4.01±0.11 1.6M 136 0.9M 0 0 0.2B

Table 2. Image classification performance on CIFAR test set. “Error” is the top-1
misclassification rate on the CIFAR-10 test set. (Error rates have the form µ ± σ,
where µ is the average over multiple trials and σ is the standard deviation. In PNAS
we use 15 trials.) “Params” is the number of model parameters. “Cost” is the total
number of examples processed through SGD (M1E1 + M2E2) before the architecture
search terminates.
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We visualize their cell structures in Figure 3, and report their performances
on CIFAR-10 in Table 2. We see that the test set error rate decreases as we
progress from b = 1 to b = 5, and the performances of these PNASNets with
smaller number of blocks are still competitive.

D Transferring from CIFAR-10 to ImageNet

Figure 4 shows that the accuracy on CIFAR-10 (even for models which are only
trained for 20 epochs) is strongly correlated with the accuracy on ImageNet,
which proves that searching for models using CIFAR-10 accuracy as a fast proxy
for ImageNet accuracy is a reasonable thing to do.

Fig. 4. Relationship between performance on CIFAR-10 and ImageNet for differ-
ent neural network architectures. The high rank correlation of 0.727 (top-1) suggests
that the best architecture searched on CIFAR-10 is general and transferable to other
datasets. (Note, however, that rank correlation for the higher-value points (with CIFAR
score above 0.89) is a bit lower: 0.505 for top-1, and 0.460 for top-5.)
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