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Abstract

The goal of this paper is to enable a 3D “virtual-tour” of
an apartment given a small set of monocular images of dif-
ferent rooms, as well as a 2D floor plan. We frame the prob-
lem as inference in a Markov Random Field which reasons
about the layout of each room and its relative pose (3D ro-
tation and translation) within the full apartment. This gives
us accurate camera pose in the apartment for each image.
What sets us apart from past work in layout estimation is the
use of floor plans as a source of prior knowledge, as well
as localization of each image within a bigger space (apart-
ment). In particular, we exploit the floor plan to impose as-
pect ratio constraints across the layouts of different rooms,
as well as to extract semantic information, e.g., the location
of windows which are marked in floor plans. We show that
this information can significantly help in resolving the chal-
lenging room-apartment alignment problem. We also derive
an efficient exact inference algorithm which takes only a few
ms per apartment. This is due to the fact that we exploit in-
tegral geometry as well as our new bounds on the aspect ra-
tio of rooms which allow us to carve the space, significantly
reducing the number of physically possible configurations.
We demonstrate the effectiveness of our approach on a new
dataset which contains over 200 apartments.

1. Introduction

How many times have you switched apartments/houses
in the past few years? According to the U.S. Census Bu-
reau, out of a population of 307,243,000 people, 35,918,000
Americans moved between 2012 and 2013. That is 11.69%
of the US population. On an average day, Craigslist, a popu-
lar classified advertisement website, has 90,000 rental posts
only for New Your City, with any bigger city exceeding
10,000 ads on any given day. Each ad typically has a few
images showing different rooms in the apartment, and in

∗Denotes equal contribution

Figure 1. Our approach reconstructs rental apartments from a set
of monocular images and a floor plan.

many cases also a floor plan which gives the potential ten-
ants an idea about how the space is organized.

Given a rental ad that contains a few images and a floor
plan of the apartment, our goal is to reconstruct the apart-
ment in 3D. That is, given only monocular images of dif-
ferent rooms, we want to enable a “virtual-tour” allowing
the potential tenant to virtually explore the apartment with-
out having to physically visit the site. This adds another
dimension to apartment rental sites, and is particularly con-
venient for cold cities like Toronto or Chicago where apart-
ment search in the winter is particularly unpleasant.

Inferring 3D information from a single monocular image
has been one of the holy grails of computer vision since its
beginnings [15]. The problem itself is ill-posed, however,
prior knowledge about the type of scene as well as scene
semantics can help resolve some of the ambiguities [11].
By assuming that rooms conform to Manhattan world, im-
pressive results have been achieved for the problem of room
layout estimation [8, 22]. Estimating the layout means de-
termining the 3D cuboid that defines the room, i.e., infer-
ring the accurate positions of the front wall towards which
the camera is facing. This is a very challenging and exciting
problem that received a lot of attention in the past years.
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In our work, we take this idea one step further. Our
goal is to estimate a layout for each room from a monocular
image and to accurately localize its camera within the full
apartment. We phrase the problem as an energy minimiza-
tion problem that exploits rich information contained in the
apartment’s floor plan as an additional source of informa-
tion. We make use of the floor plan in order to get informa-
tion about aspect ratios of the floor for each room. The room
layouts across images are linked by the fact that all rooms
share the same height in 3D, which imposes aspect ratio
constraints in the layout estimation problem. Scene type
classification helps us localize in which room the image was
taken in. We also make use of semantics in the form of win-
dows for which typically the floor plan contains additional
ratio constraints. Windows are shown to be a very useful
cue for camera localization within the apartment since they
break the symmetry of parallel walls. We use structured pre-
diction [26, 25] to train our model and a branch-and-bound
inference algorithm that runs in real-time.

Since no suitable data exists for this task, we also col-
lected our own dataset by crawling a London-based rental
site. We collected posts for 215 apartments, each of which
had at least one image and a floor plan, resulting in the total
of 1259 images. We labeled our data with rich annotations
including the ground-truth layout and pose of each room
within the full apartment. Our dataset is available here:
www.cs.utoronto.ca/∼fidler/projects/rent3D.html.

2. Related Work
Estimating the 3D room layout from monocular images

has been popularized by [8]. It is a very challenging prob-
lem due to inherent ambiguities in 3D, large amount of
clutter typically present in indoor scenes, and little con-
trast on the actual wall intersections. By assuming that the
world is Manhattan, layout estimation was formalized as
energy minimization in a Markov Random Field that tries
to place a 3D room cuboid based on 3D-informed image
features [6, 14, 27, 8, 18, 19, 7, 3]. While the optimization
seemed intractable at first [8], it was recently shown that a
globally optimal configuration can be found in real time us-
ing branch-and-bound [24]. Our work builds on these ideas.
However, in contrast to prior work, we make use of floor
plans in order to both, estimate the layout of each image
and localize it within the apartment. Using floor plans for
indoors is related to using cartographic maps for localiza-
tion [1] or semantics [28, 17] in outdoor scenarios.

Numerous approaches have also been proposed address-
ing 3D detection or segmentation of indoor scenes [14, 4, 9,
10]. While this is an important line of work, particularly in
scenes where objects dominate, our focus here is on layout
and camera estimation. Note also that rental ads typically
show cleaner, less cluttered rooms.

Using floor plans to facilitate 3D reconstruction is not a

new idea. However, past work relied on 3D point clouds
obtained via video scans of a site or RGB-D cameras [29, 5,
16, 2]. This is in contrast to our work which aims to perform
reconstruction from monocular images. To the best of our
knowledge, this has not been tackled in the literature before.

3. Rent3D Apartment Dataset
Since our goal here is to reconstruct apartments in 3D,

we collected our dataset by crawling a rental website. We
chose a London rental site that contained rental information
in a unified format and the majority of posts also had floor
plans. To get the data, we queried the site for “Central Lon-
don”. Out of many hits, we took the first 215 that had a floor
plan of sufficient resolution and at least one photo.

Statistics: The 215 apartments have in total 1312 rooms,
6628 walls, 1923 doors, and 1268 windows. The number
of photos per apartment ranges from 2 to 30, with the total
number in our dataset being 1259, not counting the outdoor
images. Note that in their rental ads, people sometimes also
post pictures of the apartment building, or public facilities
inside the building. We keep these photos as they represent
the challenge of dealing with real world data. The number
of all images are 1570.

Collecting Ground-truth: Since the goal of the paper is
layout estimation and camera localization (computing the
pose of the camera with respect to the full apartment), we
annotated the data with three types of ground-truth. To an-
notate the floor plan, we asked in-house annotators to an-
notate the scale mapping the plan to the real world. This
can easily be done since most of the floor plans contain in-
formation about the physical dimensions of the rooms. We
further annotated the room outline, room type, as well as
the position of doors and windows. Note that the outline of
each room is not necessarily rectangular. Roughly 10% of
rooms in our dataset have more complex polygonal shape.

Following the layout annotation setup [8], we collected
annotations for the front, left, and right wall in each photo,
as well as ceiling and floor. To get ground-truth for cam-
era localization, the annotators were asked to first select the
room in the floor plan in which the photo was taken, as well
as to click on a wall in the photo and link it to the corre-
sponding wall (line) in the floor plan. Since rooms share
walls, clicking on only the wall is ambiguous, thus room
information is also required.

Note that finding the alignment is a very challenging task
even for a human. This is due to the minimal information
typically contained in the floor plan. The annotators in most
cases resolved the problem by checking the semantics: the
type of scene, the presence and number of windows, and
sometimes even objects, e.g., some floor plans have infor-
mation about ovens, toilets or bathtubs. There were how-
ever cases where even humans could not find the correct
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Figure 2. Parameterization of our layout task. Using projective
geometry, y4 can be computed from parameters y1, y2, y3 and a
known apartment height h. Further, given intersection points p1
and p2 we can compute the left bottom coordinate of the left wall
using the aspect ratio from the floor plan. Our layout configuration
is valid if the ray through vp1 and pleft lies outside the image.

alignment. We allowed the annotators to choose “unknown”
in the ambiguous examples. Out of the 1259 indoor photos,
71 of them do not have ground-truth room alignment, and
11 photos do not have ground-truth wall alignment.

Scenes: In the raw annotations, there were a total of 22
room types, which we merged into 5 scene labels: Recep-
tion, Bedroom, Kitchen, Bathroom, Outdoor. Of all 1570
photos in the dataset, the five labels have 485, 332, 213,
235, 305 photos, respectively.

4. Floor Plan Priors for Layout Estimation
We are interested in jointly solving two tasks: estimating

the layout of the room for each given image, and finding
the room’s 3D pose relative to the full apartment. Here,
our apartment is defined via the floor plan. Note that this
is in principle a continuous problem, which we represent
in a discrete manner. Instead of parametrizing the pose in
3D, we phrase the problem as that of choosing the room in
the floor plan in which the photo was taken, and choosing
which wall in that room the camera (image) is facing. This
is much like our apartment dataset annotation was done. To
jointly address this task we first formulate the problem in
the context of energy minimization.

4.1. Energy Formulation

More formally, let r ∈ {1, . . . , R} be a discrete random
variable representing the room, where R are the number of
rooms in the floor plan. Let cr ∈ {1, . . . , Cr} be a discrete
variable representing within room r which wall the picture
is facing. The number of walls within a room is denoted
by Cr. We parameterize the location and orientation of the
camera in 3D space in terms of the room layout. We assume
the world is Manhattan [8], and thus our room is a cuboid. It
can be represented via 4 corners of the front wall, i.e., 4 rays
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Figure 3. (Left) Example of a floor-plan with window-to-wall ra-
tios, (Right) The window-to-wall ratios in the floor plan enable us
to compute the rays (dashed lines) for the windows given y2 and
y3 in our layout problem. Windows are denoted with green lines.

originating from a pair of orthogonal vanishing points [14].
Fig. 2 illustrates this parametrization. We compute the van-
ishing points using the implementation provided by [8].

Note that given the vanishing points, the camera intrin-
sics and rotation (relative to room) can be computed [21].
This enables us to reason in 3D, up to scale. We thus cannot
exploit the actual physical dimensions contained in the floor
plan, but we can exploit their ratios. We use the meta-data
contained in our dataset about the room height as well as
the dimensions of rooms available in floor plans in order to
compute the aspect ratios of different walls in the apartment.
We use (r, cr) to look them up for a particular hypothesis.

The aspect ratio a(r, cr) allows us to parameterize the
layout problem in terms of only three variables y1, y2, y3
(and not the typical four [23]). We can compute the fourth
ray by using a(r, cr) as explained in Sec. 5. Let y =
(y1, y2, y3) be the set of rays encoding the layout.

We formulate the localization problem within the apart-
ment as inference in a Markov Random Field which esti-
mates room layout (y), the room in which the picture was
taken as well as the assignment of the front wall to the floor
plan. Our energy is a sum of energies encoding the agree-
ment with geometric features (orientation maps (OM) [14]
and geometric context (GC) [12, 8]), the presence of objects
such as windows (which are a useful cue for disambiguating
alignment), as well as the aspect ratio of the room, which
links the floor plan and the room layout. We define:

E(r, cr,y) = Elayout(y) + Ewin(r, cr,y)

+ Eas−ratio(r, cr,y) + Escene(r),

We next provide details regarding each energy term.

Layout: We follow [23], and employ features for each
possible face α ∈ F = {left, front, right,floor, ceiling} vis-
ible within the image. More specifically

Elayout(y) =
∑
α∈F

w>lay,αφlay,α(y),



for all r, c do
put pair (f̄(Y),Y) into queue and set Ŷ = Y
repeat

split Ŷ = Ŷ1 × Ŷ2 with Ŷ1 ∩ Ŷ2 = ∅
put pair (f̄(Ŷ1), Ŷ1) into queue
put pair (f̄(Ŷ2), Ŷ2) into queue
retrieve Ŷ having highest score

until |Ŷ| = 1
end for

Figure 4. Inference uses exhaustive search and branch & bound.

withw a vector of weights and φlay,α being 11-dimensional
occurrence counts of orientation map (5 values) and geo-
metric context (6 values) features within face α.

Windows: Given the room r as well as the wall cr we can
access the floor plan to determine whether, and if, at which
location, a window should be present in the scene. We rep-
resent the window locations with rays originating from the
vertical vanishing point. Note that the locations of the win-
dows in the floor plan relative to the wall they belong to
define a cross-ratio projective invariant which can be used
to compute the vertical window rays in the image given the
wall rays y1 and y2, illustrated in Fig. 3. We provide the
details in the supplementary material.

On the image side, we predict windows by train-
ing a pixel-level classifier on the training set [20]. Let
φwin,α(r, cr,y) refer to the fraction of the predicted win-
dow pixels falling within the window rays for face α ∈ F .
In addition we also augment this vector with information
about the fraction of window pixels falling outside the win-
dow area, for a total of 6 features. We have:

Ewin(r, cr,y) =
∑
α∈F

w>win,αφwin,α(r, cr,y).

Note that, just like for windows, the same information is
also available for doors. However, our semantic classifiers
for doors yielded poor results and we thus only opted to
incorporate information about the windows in our model.

Aspect Ratios of Side Walls: We note that we have an
additional constraint imposed by the floor plan: our cam-
era relative to the estimated room layout in 3D needs to fall
within the bounds of room r, where the bounds are defined
by both, r and cr (room’s orientation). We impose this con-
straint by traveling on a ray from vp2 through p1 (defining
the edge between the left wall and the floor). Via the dis-
tance between p1 and p2, and the given aspect ratio for the
floor, it is possible to compute the second corner point pleft
on the line vp0 through p1, defining the corner of the room
where the left and the back wall meet. The details of this
computation are in suppl. material. We say that y1 and y2
form an impossible configuration given (r, cr), if the ray
vp1 through pleft intersects within the image. This would

essentially imply that the camera is behind the back wall,
and thus we will not be able to see the room. To incorporate
such infeasible configurations we assign an∞ penalty:

Eas−ratio(r, cr,y) =

{
0 (r, cry) valid
∞ (r, cry) invalid .

We impose a hard constraint for the left and right wall.

Scene: In most cases floor plans also contain information
about the location of the different rooms, e.g., dining area,
kitchen, bedroom etc. To leverage this information we add
an additional scene energy term that favors room types de-
pending on the score of a scene classifier, i.e.,

Escene(r) = wsceneφscene(r).

4.2. Efficient Inference via Branch and Bound

Given the above energy terms, inference amounts to
solving the following program:

min
r,cry

E(r, cr,y). (1)

[24] shows how to employ branch and bound to optimize
the layout of a room from a single monocular image. In
our case, we have a different parameterization as well as
new potentials which we need to design bounds for. This
is not trivial, particularly for the aspect ratio constraints.
Given (r, cr) the layout problem is parametrized by only
three variables y (rather than 4). This makes the branch and
bound procedure for our case potentially even faster. Since
the number of rooms r and the walls cr is typically small
we simply just exhaustively enumerate all possible combi-
nations and perform a branch and bound inference to obtain
the global optimum of the program given in Eq. (1).

The branch and bound approach w.r.t. y operates on in-
terval product spaces, i.e., we start with a set of all possible
layouts Y . This set is subsequently divided into smaller and
smaller subsets, by choosing the lowest scoring layout set Ŷ
from a priority queue as the next one to be split into disjunct
subsets Y1,Y2. Before adding each of those sets into a pri-
ority queue we compute a lower bound f̄ on the energy, i.e.,
we make sure that the energy of every containing element is
larger. The algorithm is provided in Fig. 4 and we detail the
bounds in the following.

Layout bounds: We follow [24] to compute the bounds
for the layout. We divide the energy into two parts de-
pending on the sign of the weight vector. This is sufficient
since our features φ are counts and hence necessarily pos-
itive. Lower bounds are then easily computable by adding
the smallest possible face for the positive features to which
we add the biggest possible negative contribution. We use
integral geometry and divide all functions into sums of ac-
cumulators which depend on at most two variables. Both
storage and computation are efficient.



Aspect ratio bounds: An aspect ratio bound f̄as−ratio
can also be obtained by setting its value to equal zero as long
as there is at least a single feasible configuration within the
set Y of the considered intervals. This essentially carves the
space of possible layouts. Computing if there exists a fea-
sible configuration can be done efficiently. We refer there
reader to the suppl. material for details on the derivation.

Window bounds: Similar to the layout energy, the win-
dow energy consists of only weighted counts. Contrasting
the layout energy, the window contributions indirectly de-
pend on the parameterized variables y via the cross-ratios
imposed by the floor plan. Careful consideration of max-
imally possible and minimally achievable regions yields
computable lower bounds for the window energy Ewin.

Scene energy: No bounding is required for the scene en-
ergy since it only depends on the room r. We exhaustively
search for the minimum over this variable.

4.3. Learning

We learn the parameters of the MRF using a structural
SVM [26]. In particular, we employ the parallel cutting
plane implementation of [22] to learn the parameters. As
task loss we use the layout pixel-wise loss.

5. Image and Floor-Plan Geometry
It is well known that the camera intrinsic matrix K and

the rotation R can be recovered from three orthogonal van-
ishing points [21]. Given K and R we can compute a ho-
mography for each face of the room, i.e., a projection which
maps the face defined by two vanishing points vpi and vpj
to fronto-parallel view:

Hij = K ·Rij ·K−1.

Here Rij denotes a column-wise permutation of R, placing
the columns i and j to column 1 and 2.

Let a be a known aspect ratio defined as h/w, where
h is the height and w the width of the wall in the physi-
cal world (we know these dimensions from the rental site).
Then, given two corner points p1 and p2 of a wall, defined
by the two intersections of rays y1, y2 and y1, y3, respec-
tively, we can compute the corner point p3 defined by the
intersection of rays y2 and y4. Thus from p3 we can get y4.
We now show how to compute p3.

We want a point p3 on a ray (vp1, p1) such that the aspect
ratio ||p̂2−p̂1||||p̂3−p̂1|| equals a pre-specified value a. Here p̂ denotes
a point in the fronto-parallel view. Since p1 and p2 lie on
a line through vp0, let’s express p2 as follows: p2 = p1 +
λ(p1 − vp0), where λ is easily computable from the two
points. Since p3 lies on a line through vp1 and p1, let: p3 =
p1 + µ(p1 − vp1). Via projective geometry we can then
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Figure 5. Left: Scene confusion matrix. Right: Examples of mis-
classification. Note that some cases are ambiguous since the room
is empty and the annotator made use of the floor plan to label it.

Train Test
Top1 Top5 Top1 Top5

Ours (aspect only) 0.2429 0.3887 0.2563 0.4050
Ours (windowGT) 0.3320 0.7166 0.3249 0.7529

Ours (window) 0.3252 0.7139 0.3249 0.7414

Table 4. Accuracy for predicting the room correctly (C = 1000).
Top 1 denotes how many of our top scoring predictions are correct.
Top 5 evaluates accuracy if we are allowed to make 5 predictions.

compute µ as

µ =
1

ã ·
∣∣1 + 1

λ

∣∣− 1
, µ > 0. (2)

Note that in cases when the denominator is negative, the
rectangle formed by p1, p2 and p3 is not valid (it crosses the
infinity point). Here ã = a · f01 and f01 = ||Hvp0||

||Hvp1||
. We

refer the interested reader to the supplementary material for
a more detailed derivation.

6. Experimental Evaluation
We evaluate our approach on our Rent3D dataset. We

use the first 100 apartments (751 photos) as our training set,
the next 30 apartments (222 photos) as a validation set, and
the last 85 apartments (597 photos) as test set. We evaluate
different instantiations of the model, and propose different
metrics to evaluate localization. We start our evaluation by
first providing details on the features used in our model. In
particular, we explain how we trained our scene and seman-
tic segmentation classifiers.

6.1. Scene Classifier

In order to classify the scene into the five different types
reception, bedroom, kitchen, bathroom, and outdoor we uti-
lize Caffe [13] and the pre-trained model provided by [30].
We extract the fc7 feature (length 4096) for each image and
train a multi-class support vector machine (SVM). Ta-
ble 6 shows the confusion matrix showing good accuracy
of 91.4% on our 5-class setting.

6.2. Window Segmentation

We train our pixel-level predictors for door, window and
other using the approach by Ren et al. [20], where we add



C Train Test Train Eval Train Time [s] Test Eval Test Time [s]
[24] (no floor plan), Transfer 1 16.70 17.00 20438.6 0.0190 22266.2 0.0208

[24] (no floor plan), Train on data 1 13.57 13.88 15643.3 0.0147 16012.4 0.0150
Ours (aspect only) 1 11.80 11.81 1164.6 0.0017 1269.5 0.0019
Ours (windowGT) 1 11.78 11.79 1144.3 0.0025 1250.0 0.0026
Ours (windowGT) 10 11.76 11.86 1158.0 0.0023 1263.4 0.0025
Ours (windowGT) 100 11.74 11.79 1199.4 0.0024 1322.8 0.0026
Ours (windowGT) 1000 11.74 11.79 1199.4 0.0024 1322.8 0.0026

Ours (window) 1 11.73 11.90 1149.3 0.0027 1258.7 0.0029
Ours (window) 10 11.78 11.83 1180.9 0.0035 1292.3 0.0035
Ours (window) 100 11.69 11.90 1164.1 0.0031 1271.5 0.0037
Ours (window) 1000 11.69 11.90 1164.1 0.0031 1271.5 0.0037

Table 1. Layout pixelwise prediction error for different methods. Average number of branch&bound evaluations and average inference time
is also given. By using the aspect ratio constraint, our model runs an order of magnitude faster than [24] and results in better prediction.

Accuracy Train Accuracy Test
Window+Aspect +Scene +Room Window+Aspect +Scene +Room

Random 0.0315 0.1108 0.1818 0.0328 0.1138 0.1954
Ours (aspect only) 0.0472 0.1538 0.2213 0.0686 0.1945 0.2654
Ours (windowGT) 0.2321 0.4683 0.5911 0.2128 0.4737 0.5995

Ours (window) 0.2051 0.4305 0.5587 0.1670 0.3982 0.5080
Table 2. Localization accuracy: Comparing different settings of our proposed approach, i.e., “Window+Aspect”, “Window+Aspect+Scene”
and “Window+Aspect+Room”. We also provide random guessing as a baseline. We use C = 1000 in S-SVM training.

Figure 6. Failure mode: Biggest apartment in dataset (16 rooms, 5
bedrooms, 88 walls). (left) our 3D recons., (right) GT recons.

an additional feature (Geometric Context). Note that the
“other” label takes the majority of the photo, so the 3 labels
have very unbalanced number of pixels. We compute the
accuracy as intersection-over-union following the standard
PASCAL evaluation. The result on test is 0.4% for door,
51.75% for window, and 95.6% for other. Since the door
classifier performs very poorly, we decided to only incorpo-

rate windows in our model.

6.3. Layout Estimation

We next evaluate layout estimation using a pixelwise
classification error as our metric. In this experiment, we
do not reason about the localization in the apartment and
only evaluate layout prediction as the isolated task. We use
several baselines. We first run the state-of-the-art layout
approach of [24], trained on the indoor dataset by Hedau
et al. [8], on our Rent3D dataset. This first baseline is de-
noted as “Transfer” and its performance results on our train-
ing and test set are given in Table 1. With a test set error
of 16.97% [24] obtains a decent performance, even though
the predictor has not seen our data in training. As a sec-
ond baseline we train [24] on our dataset. We refer to this
method as “Train on data” which improves both training and
test error by more than 3%.

We evaluate 3 different settings of our model, one where
we only use wall aspect ratio information, one where we use
GT windows and one with the trained window classifier. In
this experiment we assume we know which wall the camera
is facing, and thus our model imposes the correct aspect ra-
tio on the front wall. The results are in Table 1. Performance
improves around 2% irrespective of whether we employ GT
window annotation or the classifier output. This highlights
the robustness of our model. We show accuracy at different
C values used in S-SVM training.

In Table 1 we also compare the number of evaluations



Top5 Accuracy, Train Top5 Accuracy, Test
Window+Aspect +Scene +Room Window+Aspect +Scene +Room

Ours (aspect only) 0.2348 0.6343 0.8475 0.2769 0.6682 0.8970
Ours (windowGT) 0.5803 0.8003 0.9366 0.5858 0.8009 0.9519

Ours (window) 0.5398 0.7895 0.9312 0.5492 0.7895 0.9474
Table 3. Top 5 accuracy for predicting which wall in an apartment the camera is facing for different information used in the model, i.e.,
“Window+Aspect”, “Window+Aspect+Scene” and “Window+Aspect+Room”. We use C = 1000 in S-SVM training.
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Figure 7. Top 1 (left) and Top 5 test set performance over a large
range of values for the regularization parameter C when employ-
ing predicted window features.

required for the branch and bound method to attain the op-
timum. Additionally we provide the average time for in-
ference. We observe a reduction of both the number of
evaluations and the inference time by more than an order
of magnitude on both the training and the test set over [24].
This is because our model has one less random variable (it’s
deterministic given the aspect ratio).

6.4. Localization

In this experiment we use our model in order to predict
which room and wall the camera is facing. We evaluate the
effect of using different features in our model. We employ
a simple metric which counts the prediction as correct if
the localization in terms of both the room and front wall
matches the ground-truth alignment. We report the results
in Table 2. Since there is no competing approach we provide
random guessing as a baseline for both the training and the
test set. On the training set we achieve an accuracy of about
20% compared to a test set performance of above 17%.

In columns we add features to our model. By +Scene we
denote the case where the scene classifier is included in our
potentials. Notice that the scene feature more than doubles
the performance. We also evaluate +Room, in which case
we give the model information in which room the photo
was taken but not which wall the camera was facing. The
random baseline in this case is 18%, which is due to the fact
that some rooms are not cuboids and have more walls.

To better assess the performance of our approach we pro-
vide the top 5 wall prediction accuracy in Table 3. In this
case we take top 5 predictions from our model and count the
assignment as correct if any of the predictions is correct. In
Table 4 we evaluate the performance of correctly predict-
ing the room in which each photo was taken. We see that
windows have a huge impact on performance.

In Fig. 7 we visualize the top 1 (we are only allowed one

guess) prediction performance (left) and the top 5 predic-
tion performance on the test set over a large range of values
for the regularization parameter C. For this experiment we
used the predicted window features. We observe that the
performance of the different approaches is very robust w.r.t.
the choice of regularization.

6.5. Visual Results

We also provide some qualitative results in Fig. 8.
We show the apartment 3D reconstructions obtained
from our model. We show results for three settings
“window+aspect”, “window+aspect+scene”, and “win-
dow+aspect+room”, as well as GT. Information about the
number of images (which room the photo was taken in) and
walls (which wall the camera was facing) which were pre-
dicted correctly for the full apartment is provided.

We show the layout and localization (alignment) results
in Fig. 9. Solid faces are predictions from our model and
dashed lines are GT. Color coding conveys different walls.

7. Conclusion
We have proposed an approach that enables a 3D

“virtual-tour” of an apartment given a small number of
monocular images of different rooms as well as a floor plan.
Our approach exploits the floor plan to impose aspect ratio
constraints across the layouts of different rooms, as well as
to extract semantic information, e.g., the location of win-
dows and scene types. We showed that this information
significantly helps in resolving the challenging localization
problem. We derived an efficient exact inference algorithm
which takes only a few milliseconds per apartment. We
demonstrated the effectiveness of our approach in a new
dataset which contains over 200 apartments. In the future
we plan to exploit other objects such as ovens and toilets
which are typically also labeled in floor-plans, and provide
additional cues for solving this challenging problem.
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Window+Aspect Window+Aspect+Scene Window+Aspect+Room Ground truth

2 images out of 8 5 images out of 8 5 images out of 7 -
5 walls out of 22 11 walls out of 22 11 walls out of 19 -

1 image out of 5 2 images out of 5 4 images out of 5 -
3 walls out of 13 6 walls out of 13 11 walls out of 13 -

Figure 8. For different settings of our model, “window+aspect”, “window+aspect+scene”, “window+aspect+room”, as well as for GT we
illustrate the apartment reconstructions in 3D. Below each we provide the numbers of how many images and walls were matched correctly:
“x images out of y” means that out of a total of y indoor photos for this apartment, x of them have correct front-wall alignment. “a walls
out of b” means that out of a total of b visible walls, a of them are correctly aligned.

Figure 9. Room layout estimation and room-apartment alignment with our model. The top row of images color code the estimated vertical
walls, and ground-truth layout is shown with dashed lines. In the bottom row, we show the floor plans with predicted and GT alignments.
The solid colors show the alignment predicted by the model, where the yellow solid line denotes the alignment prediction for the front
face. Similarly, GT alignment is shown with dashed lines. A red point shows the GT location of the camera, and the arrow is the viewing
direction. Green point and line is our estimated localization. On the right we show a failed example due to a weird shape of the room.
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