
Supplementary Material for Paper:

Rent3D: Floor-Plan Priors for Monocular Layout Estimation

Chenxi Liu1 ∗ Alexander G. Schwing 2,∗ Kaustav Kundu2 Raquel Urtasun2 Sanja Fidler2

1State Key Lab. on Intelligent Technology and Systems
Tsinghua Nat. Lab. for Inf. Science and Tech. (TNList)
Department of Automation, Tsinghua University

2Department of Computer Science
University of Toronto

chenxi liu@live.cn, {aschwing, kkundu, urtasun, fidler}@cs.toronto.edu

In the Supplementary Material we first provide the derivations used in our model. We then provide several additional
results: both the 3D reconstructions as well as layout and layout-to-floor-plan alignment.

1. Geometry of Layout with Floor-Plans

vp0

vp1

vp2
y4

p1◦ p2
◦

p3◦

y1

y2 y3

r4

r1

r2 r3

Figure 1. Parameterization of our layout task. Using projective geometry, the parameter y4 can be computed from the three parameters
y1, . . . , y3 and a known apartment height h.

It is well known that the camera intrinsic matrix K and the rotation R can be recovered from three orthogonal vanishing
points [1]. Given K and R we can compute a homography for each face of the room, i.e., a projection which maps the face
defined by two vanishing points vpi and vpj to fronto-parallel view:

Hij = K ·Rij ·K−1.

Here Rij denotes a column-wise permutation of R, shuffling the columns i and j to be column 1 and 2.

1.1. Computing y4 from y1, y2 and y3

Let a be a known aspect ratio defined as w/h, where h is the height and w the width of the front wall in the physical world
(we know these dimensions from the rental site). Then, given two corner points p1 and p2 of a wall, defined by the two
intersections of rays y1, y2 and y1, y3, respectively, we can compute the corner point p3 defined by the intersection of rays
y2 and y4. Knowing p3 we easily obtain the ray y4. We now show how to compute p3.

∗Denotes equal contribution

1

We want a point p3 on a ray (vp1,p1) such that the aspect ratio ||p̂2−p̂1||
||p̂3−p̂1|| equals a pre-specified value a. Here p̂ denotes

a point in the fronto-parallel view, i.e.,

p̂ =
H · p
H3: · p

,

where H3: denotes the third row of matrix H . Note that ||p̂2 − p̂1|| is the width of the wall in the fronto-parallel view, and
||p̂3 − p̂1|| refers to its height.

Since p1 and p2 lie on a line through vp0, let’s express p2 as follows:

p2 = p1 + λ(p1 − vp0), (1)

where λ is easily computable from the two points.
In rectified coordinates

p̂2 =
H · p2

H3: · p2
=
H · (p1 + λ(p1 − vp0))

H3:(p1 + λ(p1 − vp0))

H3:vp0=0
=

(1 + λ)Hp1 − λ ·Hvp0

(1 + λ)H3: · p1
(2)

=
H · p1

H3: · p1
− λ Hvp0

(1 + λ)H3:p1
, (3)

where we have used a shorthand H = H01. The width in rectified view is therefore given by

w = ||p̂2 − p̂1|| =
∣∣∣ λ

1 + λ

∣∣∣ ||Hvp0||
|H3:p1|

.

Since p3 lies on a line through vp1 and p1, let

p3 = p1 + µ(p1 − vp1). (4)

As before we can get p3 in the rectified view:

p̂3 =
H · p1

H3: · p1
− µ Hvp1

(1 + µ)H3:p1
,

and thus the height is given by

h = ||p̂3 − p̂1|| =
∣∣∣ µ

1 + µ

∣∣∣ ||Hvp1||
|H3:p1|

.

Since we know that w = a · h, we obtain the equality∣∣∣ λ

1 + λ

∣∣∣ · ||Hvp0|| = a ·
∣∣∣ µ

1 + µ

∣∣∣ · ||Hvp1||. (5)

Let’s define:

f10 =
||Hvp1||
||Hvp0||

,

which is a value that can be precomputed prior to any computation with our model. Redefining our aspect ratio via ã = a·f10,
again a value that can be precomputed, we obtain the following rule after simple manipulation of Eq. (5):

µ =
1

ã ·
∣∣1 + 1

λ

∣∣− 1
, µ > 0, (6)

µ =
1

−ã ·
∣∣1 + 1

λ

∣∣− 1
, µ < 0. (7)

Note that a negative denominator for µ > 0 would result in a rectangle for the front wall which is not valid (it crosses the
infinity point). We now have µ, which defines p3, from which we can easily obtain the fourth ray y4.

vp0

vp1

vp2

c
c

c
c

c
c

c
c

c

#
#

#
#

XXXXXXXXXXXX

y4

p1◦

◦pim,left

◦
pleft

◦
p′im,left

p2
◦

p3◦

y1

y2 y3

r4

r1

r2 r3

Figure 2. A ray through vp1 and the point pleft, the left back coordinate of the floor, needs to fully lie outside the image in order to define
a proper room with known aspect ratios for the walls. This imposes restrictions on where p2 can be.

1.2. Computing the Left and Right Wall

The previous section gives us the full front wall given the three rays y1, y2 and y3. However, to get a valid room hypothesis
we also need to make use of the aspect ratio of the floor given via the floor-plan. A room hypothesis is valid if the two corner
points corresponding to the intersection of the (left, ground, back) walls and (right, ground, back) walls, fall outside the
image. This imposes a restriction that the camera is placed inside the room.

Let’s first compute the left back corner, i.e., the corner pleft corresponding to the intersection of the (left, ground, back)
walls (Fig. 2), given the aspect ratio afloor. We define afloor as the aspect ratio of the floor, i.e., the width of the front wall
divided by the width of the left wall. A correct configuration must place the ray through vp1 and pleft to lie outside of the
image (to the left of the ray through vp1 and [1, imheight]).

We again parametrize the point via the ray (line) it lies on, i.e.,

pleft = p1 + µleft(p1 − vp2).

Employing the same derivation as in the previous subsection we obtain

µleft =
1

ãfloor ·
∣∣1 + 1

λ

∣∣− 1
, µleft > 0

µleft =
1

−ãfloor ·
∣∣1 + 1

λ

∣∣− 1
, µleft < 0

where:

ãfloor = afloor · f12, and f12 =
||H12vp1||
||H12vp2||

.

Note that H12 is a homography defined by the pair of vanishing points vp1 and vp2.
With a very similar derivation, we can also compute the point pright, a corner of the room where the (right, floor, back)

walls meet.
To get a valid room all we need to check is whether the ray from vp1 to pleft, and a ray vp1 to pright fall outside the

image. The easiest to check this is illustrated in the following. Let pim,left be the corner of the image with x = 1, that is the
closest to vp1, and let p′im,left = [imwidth,pim,left(y)]. Figure 2 illustrates the notation.

We can compute the line that goes through vp1 and pim,left using homogeneous coordinates as follows: nleft = vp2 ×
pim,left. Then our room hypothesis is valid if

sign
(
nleft

T · (pleft − vp1)
)
= −sign

(
nleft

T · (p′im,left − vp1)
)
. (8)

This just checks that both pleft and p′im,left are on opposite sides of the line that goes through vp1 and pim,left. A similar
constraint follows for the right point.

Note that nleft can be precomputed, and likewise s := −sign
(
nleft

T · (p′im,left − vp1)
)

. Assume for the moment that
s > 0. We will also assume λ > 0, which can easily be imposed in our parametrization of the layout problem. Then, to get a

valid room, we want to find a constraint on λ such that

nleft
T · (pleft − vp1) > 0.

Plugging in pleft = p1 + µleft(p1 − vp2), we obtain:

nleft(x) ·
[
p1(x) + µleft

(
p1(x)− vp2(x)

)
− vp1(x)

]
+ nleft(y) ·

[
p1(y) + µleft

(
p1(y)− vp2(y)

)
− vp1(y)

]
> 0,

which is equivalent to

µleft

[
nx

(
p1(x)− vp2(x)

)
+ ny

(
p1(y)− vp2(y)

)]
︸ ︷︷ ︸

Define this as: cx

+nleft(x)
(
p1(x)− vp1(x)

)
+ nleft(y)

(
p1(y)− vp1(y)

)
︸ ︷︷ ︸

Define this as: cy

> 0.

Note that cx and cy depend only on p1 and are easily computable. All in all, we require

µleft · cx + cy > 0.

We separate two cases:

• cx > 0

µleft > −
cy
cx
.

We plug in: µleft = 1

ãfloor

(
1+

1
λ

)
−1

. Given our parametrization we assume µleft > 0. So if − cycx < 0, then the above

constraint is satisfied for all λ > 0. If − cycx > 0, then we have:

1

λ
<
− cxcy + 1

ãfloor
− 1.

If
− cxcy +1

ãfloor
− 1 < 0, then the constraint is never satisfied. If

− cxcy +1

ãfloor
− 1 > 0, then:

λ >
ãfloor

− cxcy + 1− ãfloor
.

• cx < 0

µleft < −
cy
cx
.

Notice that if cy < 0, then this constraint is never satisfied. If cy > 0,

1

λ
>
− cxcy + 1

ãfloor
− 1.

If
− cxcy +1

ãfloor
− 1 < 0, then this constraint is satisfied for all λ. If

− cxcy +1

ãfloor
− 1 > 0, then:

λ <
ãfloor

− cxcy + 1− ãfloor
.

Note that in both cases the bound on λ is function of cxcy , and both cx and cy are linear functions of p1. It’s easy to show
that the bound is thus either a convex or a concave function of p1. This bound can be used to carve the space of possible
layouts faster in our branch and bound inference of the layout problem [3, 2]. In particular, at each branching step, we get
an interval for y1 and an interval for y2. This defines a convex area (a quadrilateral) for the point p1. Clearly, if at least one
corner point of this quadrilateral lies to the left of line that goes through vp1 and pim,left, then our pleft will always be to
the left of this line as well, and thus outside the image. Such cases do not impose any restrictions on λ. If the quadrilateral
for p1 lies full on the right side of this line, then we need to inspect the bound on λ. Since the bound is a convex or concave
function of p1 and the region for p1 is convex, we only need to compute the bound in the corner points of this region. Since
in each step of our branch and bound inference we need to find the biggest possible wall in order to compute the upper bound
on our optimization function, and the smaller wall to compute the lower bound, we can either take the least restrictive or the
most restrictive bound on λ. This essentially tells us where the point p2 could possibly be in order to ensure a valid room
configuration. We then branch p2 only within the allowed interval.

(a) (b)

vp0

vp1

vp2

y1

y2 y3

Figure 3. (a) Example of a floor-plan with window-to-wall ratios (top), (b) The window-to-wall ratios in the floor plan enable us to compute
the rays (dashed lines) for the windows given y2 and y3 in our layout problem. The windows are denoted with green lines.

1.3. Window rays given p1 and p2

To complete our derivations we still need to compute the vertical rays (rays going through vp1) that define the regions for
the windows. This can be done through the floor-plan in which we are given the ratios of the lengths for the window given
the wall as illustrated in Fig. 3(a). In order to cast our rays we make use of the cross-ratio perspective invariant as shown in
Fig. 3(b).

2. Visualizations
In the following pages we show success cases and failure modes in the following two Tables respectively. Specifically,

we illustrate the generated 3D visualizations corresponding to different instantiations of our model. Below each 3D plot we
provide the numbers of correctly matched images and walls. Below we also visualize the layout prediction and the estimated
layout to floor-plan alignment for each image. Following the main submission, dashed lines in both the image as well as the
floor plan depict the groundtruth, while solid lines and semi-transparent image overlays indicate the prediction.

References
[1] C. Rother. A new approach for vanishing point detection in architectural environments. In Proc. BMVC, 2000. 1
[2] A. G. Schwing, S. Fidler, M. Pollefeys, and R. Urtasun. Box in the box: Joint 3d layout and object reasoning from single

images. In Proc. ICCV, 2013. 4
[3] A. G. Schwing and R. Urtasun. Efficient Exact Inference for 3D Indoor Scene Understanding. In Proc. ECCV, 2012. 4

2.1. Success cases

Window+Aspect Window+Aspect+Scene Window+Aspect+Room Ground truth

1 images out of 2 2 images out of 2 2 images out of 2 -
2 walls out of 4 4 walls out of 4 4 walls out of 4 -

2 images out of 4 1 images out of 1 3 images out of 4 -
6 walls out of 12 3 walls out of 3 9 walls out of 12 -

Window+Aspect Window+Aspect+Scene Window+Aspect+Room Ground truth

1 images out of 4 4 images out of 4 4 images out of 4 -
2 walls out of 8 8 walls out of 8 8 walls out of 8 -

Window+Aspect Window+Aspect+Scene Window+Aspect+Room Ground truth

2 images out of 3 3 images out of 3 3 images out of 3 -
4 walls out of 7 7 walls out of 7 7 walls out of 7 -

1 images out of 4 3 images out of 4 3 images out of 4 -
3 walls out of 11 9 walls out of 11 9 walls out of 11 -

Window+Aspect Window+Aspect+Scene Window+Aspect+Room Ground truth

1 images out of 5 4 images out of 5 4 images out of 5 -
3 walls out of 14 11 walls out of 14 11 walls out of 14 -

Window+Aspect Window+Aspect+Scene Window+Aspect+Room Ground truth

3 images out of 5 3 images out of 4 3 images out of 5 -
6 walls out of 11 6 walls out of 8 6 walls out of 11 -

Window+Aspect Window+Aspect+Scene Window+Aspect+Room Ground truth

1 images out of 4 3 images out of 4 3 images out of 4 -
3 walls out of 12 9 walls out of 12 9 walls out of 12 -

Window+Aspect Window+Aspect+Scene Window+Aspect+Room Ground truth

2 images out of 5 4 images out of 5 4 images out of 5 -
4 walls out of 11 8 walls out of 11 8 walls out of 11 -

Window+Aspect Window+Aspect+Scene Window+Aspect+Room Ground truth

0 images out of 3 2 images out of 3 2 images out of 2 -
0 walls out of 6 4 walls out of 6 4 walls out of 4 -

Window+Aspect Window+Aspect+Scene Window+Aspect+Room Ground truth

1 images out of 3 2 images out of 3 3 images out of 3 -
3 walls out of 9 6 walls out of 9 9 walls out of 9 -

1 images out of 4 3 images out of 4 3 images out of 3 -
2 walls out of 11 7 walls out of 11 7 walls out of 8 -

Window+Aspect Window+Aspect+Scene Window+Aspect+Room Ground truth

2 images out of 4 2 images out of 4 2 images out of 4 -
6 walls out of 10 6 walls out of 10 6 walls out of 10 -

Window+Aspect Window+Aspect+Scene Window+Aspect+Room Ground truth

0 images out of 5 3 images out of 5 3 images out of 5 -
2 walls out of 15 9 walls out of 15 9 walls out of 15 -

Window+Aspect Window+Aspect+Scene Window+Aspect+Room Ground truth

2 images out of 6 4 images out of 6 5 images out of 6 -
5 walls out of 14 8 walls out of 14 10 walls out of 14 -

Window+Aspect Window+Aspect+Scene Window+Aspect+Room Ground truth

Table 1: For different settings of our model, ‘window+aspect,’ ‘window+aspect+scene’, ‘window+aspect+room,’ as well as for GT we
illustrate successful apartment reconstructions on the test set in 3D. Below each we provide the numbers of how many images and walls
were matched correctly.

2.2. Failure cases

Window+Aspect Window+Aspect+Scene Window+Aspect+Room Ground truth

0 images out of 2 0 images out of 2 0 images out of 2 -
0 walls out of 6 0 walls out of 6 0 walls out of 6 -

1 images out of 4 0 images out of 2 2 images out of 4 -
3 walls out of 10 0 walls out of 4 6 walls out of 10 -

Window+Aspect Window+Aspect+Scene Window+Aspect+Room Ground truth

1 images out of 5 0 images out of 5 1 images out of 5 -
3 walls out of 12 0 walls out of 12 3 walls out of 12 -

Window+Aspect Window+Aspect+Scene Window+Aspect+Room Ground truth

0 images out of 5 0 images out of 5 0 images out of 4 -
0 walls out of 11 0 walls out of 11 0 walls out of 9 -

Window+Aspect Window+Aspect+Scene Window+Aspect+Room Ground truth

0 images out of 4 0 images out of 4 0 images out of 4 -
0 walls out of 9 0 walls out of 9 0 walls out of 9 -

Table 2: For different settings of our model, ‘window+aspect,’ ‘window+aspect+scene’, ‘window+aspect+room,’ as well as for GT we
illustrate failing apartment reconstructions on the test set in 3D. Below each we provide the numbers of how many images and walls were
matched correctly.

