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Introduction

Adversarial examples

• trigger mis-classification by slightly perturbing the input.

• may be physically inauthentic when they remain in the
image space.

Contributions

• Go beyond the image space, attack in the physical space
by perturbing 3D physical parameters.

• First work to study the interpretable 3D adversarial
examples that are physically authentic and plausible.

Physical Properties We Attacked

Differentiable attack:

• Surface Normal (N)

• Illumination (L)

• Material (M)

Non-differentiable attack:

• Color (C)

• Rotation (R)

• Translation (T)

• Lighting (L)

Physical Adversarial Attack

Algorithm 1

1: Input: physical params X ∈ RD;
black-box render r(·) and model f(·;θ);
loss function L(·) with parameter λ;
learning rate η; max steps T ;

2: Output: adversarial perturbation ∆X;
3: Init: I = r(X), Z = f(I;θ), c = arg maxc ′ Zc ′;

t ← 0, X(0) ← X, I(0) ← I, Z(0) ← Z, ∆X← 0;
4: repeat
5: t ← t + 1
6: if FGSM:
7: X(t) = X(t−1) + η · sign(∇X(t))
8: else: # use ZOO
9: sample: D(t) ⊆ {1, 2, . . . ,D};

10: R
(t)
d ← I

[
d ∈ D(t)

]
· ∂L(X

(t−1))
∂X

(t−1)
d

, d = 1, 2, . . . ,D;

11: X(t) = X(t−1) + η · R(t) ;
12: I(t) = r

(
X(t)
)

,

13: Z(t) = f
(
I(t);θ

)
;

14: until t = T or Z
(t)
c < maxc ′

{
Z

(t)
c ′

}
;

15: Return: ∆X = X(t) − X.

The Proposed Approach
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Original Input Image
Q1: What size is the other red block that is the same material 
as the blue cube?

A: 0

A: 1

p=2.7×10-3

Q1:How many other purple objects have the same shape as 
the purple matte object?

A: large

A: 0

- Illumination: ∆Lkey = (9.5, 5.4, 0.6)/100
- Object rotation: (−2.9,−9.4,−2.5)/1000 rad
- Object translation: (∆x ,∆z) = (2.0, 0.2)/1000,
- Object color: (∆R ,∆G ,∆B) = (9.1, 5.4,−4.8)/100, . . .

- Illumination: ∆Lkey = (0.0, 3.0,−1.0,−1.7)/100
- Object 2: (∆r ,∆θ) = (−1.6, 4.1)/100,
- Object 3: (∆x ,∆y) = (−3.1, 6.2)/100,
- Object 9: ∆c = (−3.7,−1.1,−4.5)/100, . . .

Results

White-box adversarial attacks on
classification model for ShapeNet
object:

AlexNet ResNet-34
Perturbing

Succ. p∗ Succ. p∗

Image 100.00 5.7 99.57 5.1
Surface N. 89.27 10.8 88.41 9.3

Illumination L 29.61 25.8 14.16 29.3
Material M 18.88 25.8 3.43 55.2
Combined 94.42 18.1 94.85 16.4

Visual question answering model for
CLEVR Dataset;

Perturbing
IEP
Succ. p∗

Image 96.33 2.1
Surface N. 83.67 6.8
Illumination L 48.67 9.5
Material M 8.33 12.3
Combined 90.67 8.8

p∗ stands for perceptibility x 10−3

Conclusion

• Image space adversaries can not be explained
by simple physical space changes with
current optimization algorithms.

• Directly constructing physical space
adversaries can still succeed, which poses
more serious threats.

Code will be released soon on github:
https:

//github.com/ZENGXH/adversarial_

attack_beyond_the_img_space
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