

Introduction

Adversarial examples

- trigger mis-classification by slightly perturbing the input.
- may be physically inauthentic when they remain in the image space.

Contributions

- Go beyond the image space, attack in the physical space by perturbing 3D physical parameters.
- First work to study the interpretable 3D adversarial examples that are physically authentic and plausible.

Physical Properties We Attacked

Differentiable attack:

- Surface Normal (N)
- Illumination (L)
- Material (M)

Non-differentiable attack:

- Color (C)
- Rotation (R)
- Translation (T)
- Lighting (L)

Physical Adversarial Attack

Algorithm 1

1:	Input: physical params $X \in \mathbb{R}^D$;
	black-box render $\mathbf{r}(\cdot)$ and model $\mathbf{f}(\cdot; \boldsymbol{\theta})$;
	loss function $\mathcal{L}(\cdot)$ with parameter λ ;
	learning rate η ; max steps T;
2:	Output: adversarial perturbation ΔX ;
3:	Init: $I = r(X), Z = f(I; \theta), c = \arg \max_{c'} Z_{c'};$
	$t \leftarrow 0$, $\mathbf{X}^{(0)} \leftarrow \mathbf{X}$, $\mathbf{I}^{(0)} \leftarrow \mathbf{I}$, $\mathbf{Z}^{(0)} \leftarrow \mathbf{Z}$, $\Delta \mathbf{X} \leftarrow 0$;
4:	repeat
5:	$t \leftarrow t+1$
6:	if FGSM:
7:	$\mathbf{X}^{(t)} = \mathbf{X}^{(t-1)} + \eta \cdot sign(abla \mathbf{X}^{(t)})$
8:	else: $\#$ use ZOO
9:	sample: $\mathcal{D}^{(t)} \subseteq \{1, 2, \dots, D\};$
10:	$R_d^{(t)} \leftarrow \mathbb{I}\left[d \in \mathcal{D}^{(t)}\right] \cdot \frac{\partial \mathcal{L}(\mathbf{X}^{(t-1)})}{\partial X_d^{(t-1)}}, \ d = 1, 2, \dots, D;$
11:	$\mathbf{X}^{(t)} = \mathbf{X}^{(t-1)} + \eta \cdot \mathbf{R}^{(t)}$;
12:	$I^{(t)} = r(X^{(t)})$,
13:	$\mathbf{Z}^{(t)} = \mathbf{f}(\mathbf{I}^{(t)}; \boldsymbol{\theta});$
14:	until $t = T$ or $Z_c^{(t)} < \max_{c'} \{Z_{c'}^{(t)}\};$
15:	Return: $\Delta \mathbf{X} = \mathbf{X}^{(t)} - \mathbf{X}$.

Adversarial Attacks Beyond the Image Space

Xiaohui Zeng¹, Chenxi Liu², Yu-Siang Wang³, Weichao Qiu², Lingxi Xie^{2,4}, Yu-Wing Tai⁵, Chi-Keung Tang⁶, Alan L. Yuille² ¹University of Toronto ²The Johns Hopkins University ³National Taiwan University ⁴Huawei Noah's Ark Lab ⁵Tencent YouTu ⁶Hong Kong University of Science and Technology

Results

White-box adversarial attacks on classification model for ShapeNet object:

Dorturbing	AlexNet		ResNet-34	
renturbing	Succ.	p^*	Succ.	p^*
Image	100.00	5.7	99.57	5.1
Surface N.	89.27	10.8	88.41	9.3
Illumination L	29.61	25.8	14.16	29.3
Material M	18.88	25.8	3.43	55.2
Combined	94.42	18.1	94.85	16.4

Visual question answering model for CLEVR Dataset;

Dorturbing	IEP			
renturbing	Succ.	p^*		
Image	96.33	2.1		
Surface N.	83.67	6.8		
Illumination L	48.67	9.5		
Material M	8.33	12.3		
Combined	90.67	8.8		

 p^* stands for perceptibility x 10^{-3}

Conclusion

- Image space adversaries can not be explained by simple physical space changes with current optimization algorithms.
- Directly constructing physical space adversaries can still succeed, which poses more serious threats.

Code will be released soon on github: https: //github.com/ZENGXH/adversarial_ attack_beyond_the_img_space