Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation

MOTIVATION

Problem Description:

- Automatically design CNN architectures that surpass human expert designs: Neural Architecture Search (NAS)
- Part of the AutoML initiative
- Modern CNNs usually follow a two-level hierarchy:
 - Inner cell level governs specific layer-wise computations
 - Outer network level controls spatial resolution changes
- Most previous approaches:
 - Focused on image classification
 - Search inner cell level; hand-specify outer network level

Our Goal:

• NAS for dense image prediction: semantic segmentation

- Challenge 1: Search outer network level
- Challenge 2: Computationally friendly

ARCHITECTURE SEARCH SPACE

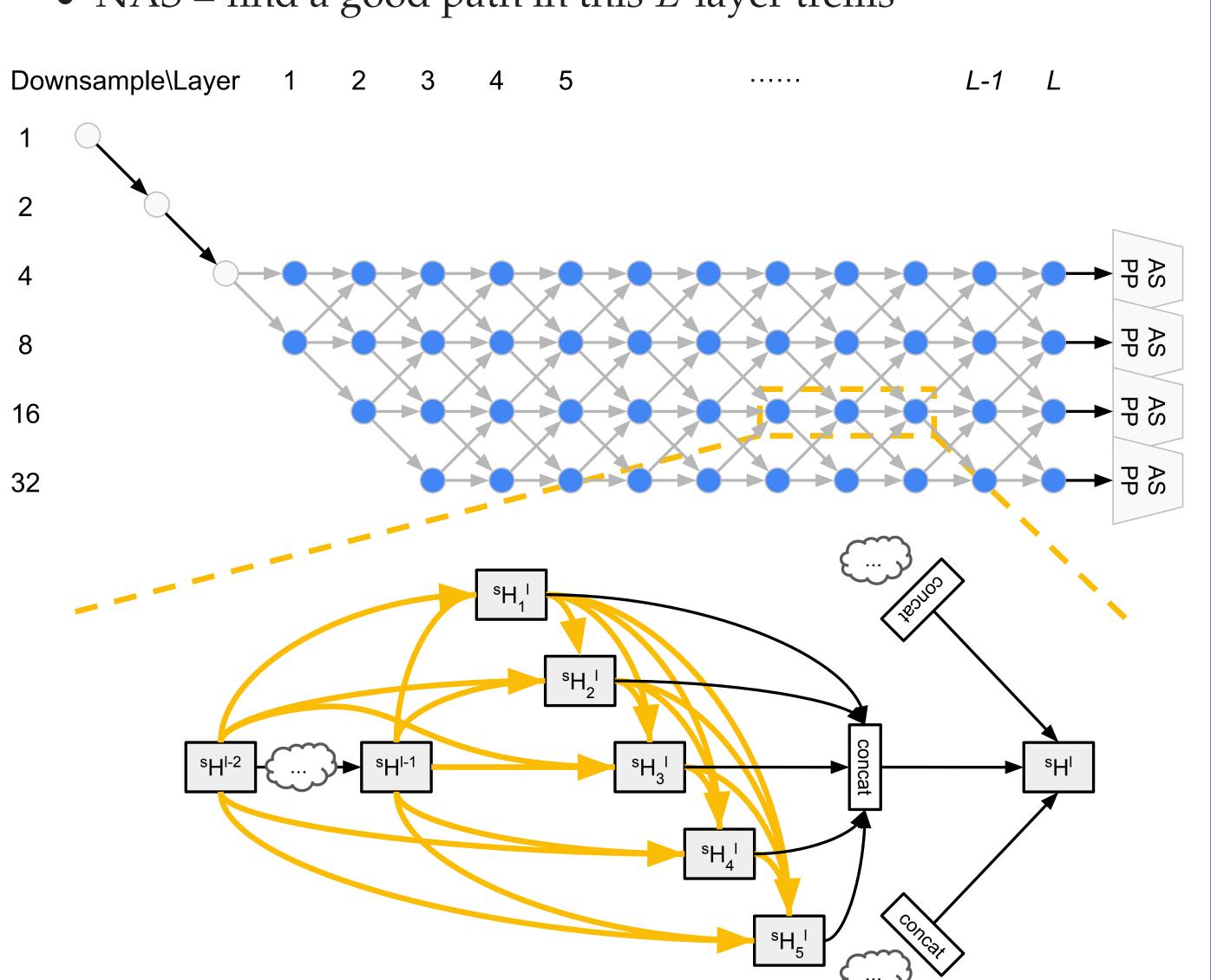
Inner Cell Level

- Same as the one used in NASNet, PNASNet, DARTS...
- Each cell consists of B = 5 blocks

Outer Network Level (NEW)

• Next layer is either twice as large, or twice as small, or same

- The smallest spatial resolution is downsampled by 32
- NAS = find a good path in this *L*-layer trellis



Chenxi Liu¹ Liang-Chieh Chen² Florian Schroff² Hartwig Adam² Wei Hua² Alan Yuille¹ Li Fei-Fei³ ¹Johns Hopkins University ²Google AI ³Stanford University

10¹⁴ different architectures

10^5 different architectures

METHOD

Continuous Relaxation of Architectures

• Cell Architecture Approximate each operation with its continuous relaxation:

$$\bar{O}_{j\to i}(H_j^l) = \sum_{O^k \in \mathcal{O}} \alpha_{j\to i}^k O^k(H_j^l) \tag{1}$$

where $\alpha_{i \to i}^{k}$ are normalized scalars, implemented as softmax. The cell level update may be summarized as:

$$H^l = \operatorname{Cell}(H^{l-1}, L)$$

• Network Architecture

Associated a scalar β with each gray ${}^{s}H^{l} = \beta_{\frac{s}{2} \to s}^{l} \operatorname{Cell}({}^{\frac{s}{2}}H^{l-1}, {}^{s}H^{l-2}; \alpha)$ $+\beta_{s\rightarrow s}^{l}$ Cell($^{s}H^{l-1}, ^{s}H^{l-2}; \alpha) + \beta_{2s}^{l}$

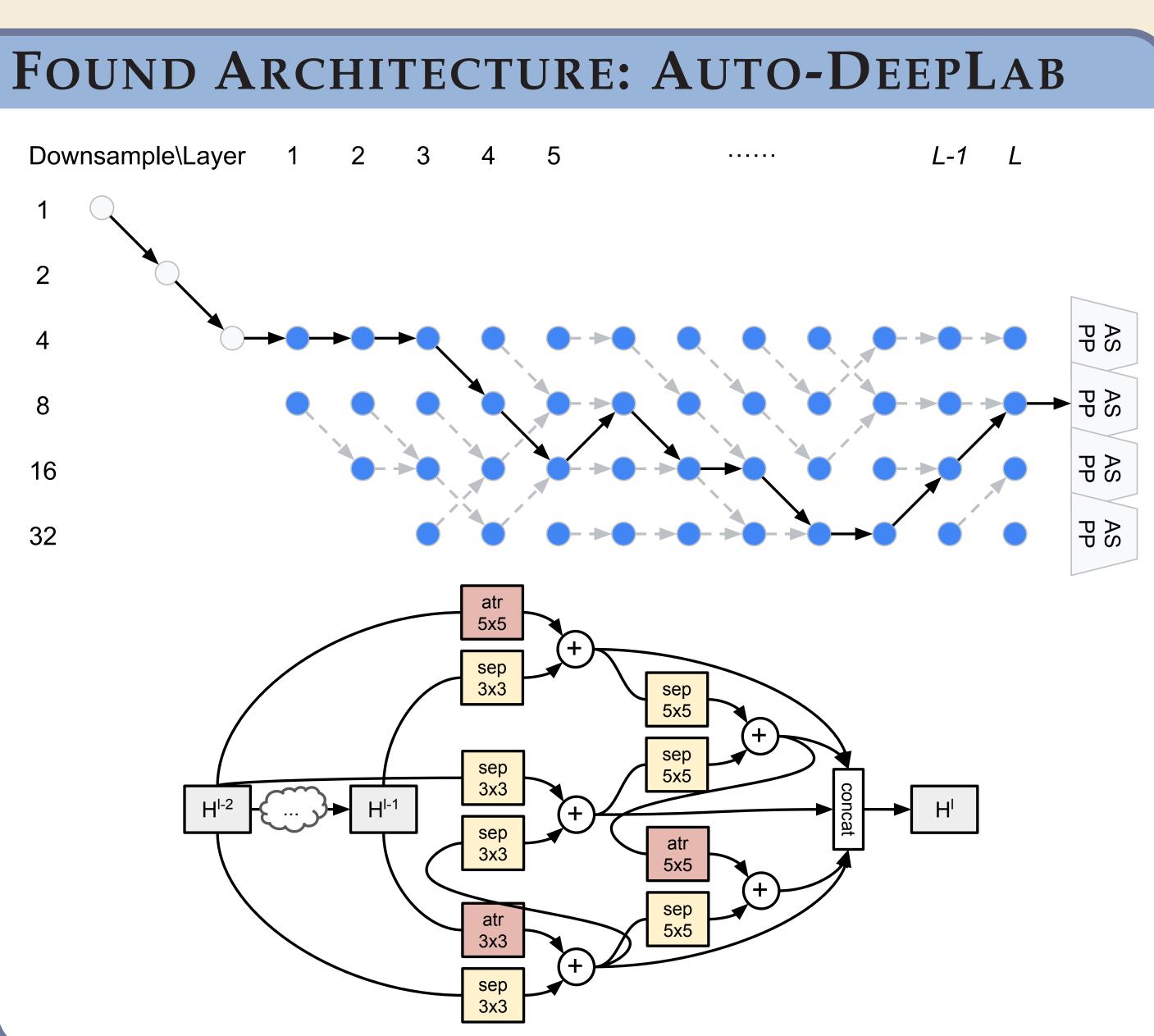
where s = 4, 8, 16, 32 and $l = 1, 2, \ldots, L$. The scalars β are normalized such that $\beta_{s \to \frac{s}{2}}^{l} + \beta_{s \to s}^{l} + \beta_{s \to 2s}^{l} = 1 \quad \forall s, l.$

Optimization

- 1. Update network weights w by $\nabla_w \mathcal{L}_{trainA}(w, \alpha, \beta)$
- 2. Update architecture α , β by $\nabla_{\alpha,\beta} \mathcal{L}_{trainB}(w, \alpha, \beta)$

Decoding Discrete Architectures

- *Cell Architecture*: Greedy argmax
- *Network Architecture*: Viterbi algorithm



 $H^{l-2};\alpha$ (2)

(3)
$$_{s \to s} \operatorname{Cell}({}^{2s}H^{l-1}, {}^{s}H^{l-2}; \alpha)$$

EXPERIMENTS & RESULTS

About the Auto-DeepLab Architecture

Results on Cityscapes

Method	ImageNet	Multi-	-Adds I	Params	mIOU (val)			
Auto-DeepLab-S		333.	25 B	10.15M	79.74			
Auto-DeepLab-M		460.	93B 2	21.62M	80.04			
Auto-DeepLab-L		695.	03B 4	44.42M	80.33			
FRRN-A		-	-]	17.76M	65.7			
FRRN-B		-	- 2	24.78M	-			
DeepLabv3+		1551	.05B 4	43.48M	79.55			
Method	Ima	ageNet	Coarse	mIOU	(test)			
FRRN-A FRRN-B	FRRN-A			63. 71.				
1	Auto-DeepLab-S Auto-DeepLab-L			79.9 80.4				
	Auto-DeepLab-S Auto-DeepLab-L		✓ ✓	80. 82.				
DeepLabv DPC	DeepLabv3+ DPC		✓ ✓	82. 82.				
Results on PASCAL VOC 2012 (test set)								
Method	In	nageNet	COCO	mIOU	J (%)			
Auto-Dee Auto-Dee Auto-Dee	pLab-M		✓ ✓ ✓	82 84 85	.1			
PSPNet DeepLaby	/3+		√ √	85 87				
Results on ADE20K (val set)								

Method	ImageNet	mIOU (%)	Pixel-Acc (%)	Avg (%)
Auto-DeepLab-S		40.69	80.60	60.65
Auto-DeepLab-M		42.19	81.09	61.64
Auto-DeepLab-L		43.98	81.72	62.85
PSPNet		43.51	81.38	62.45
DeepLabv3+		45.65	82.52	64.09

Conclusion

- age classification to dense image prediction

Google Al

• Downsample in the first 3/4 layers; upsample in the last 1/4• Atrous conv often used; learned the importance of context

• NOVEL: One of the first attempts to extend NAS beyond im-

• CHALLENGING: A network level search space that augments and complements the cell level one; joint, hierarchical search • **EFFICIENT**: 3 GPU days on 321×321 Cityscapes image crops • **COMPETITIVE**: Auto-DeepLab (always trained from scratch) outperforms other models trained from scratch significantly, and is comparable with other ImageNet-pretrained models