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MOTIVATION
Problem Description:
• Use natural language expressions to segment an image
• Very challenging: label space is free-form natural language

descriptions, instead of 20 or 80 pre-selected categories
• Application in interactive image segmentation: selecting im-

age regions of interest by typing or speaking
Motivation:
• Existing methods encode image and sentence independently
• However, people go back-and-forth between image and sen-

tence according to a psychology study, suggesting early fusion
• A more plausible model: sequentially pruning out irrelevant

regions as reading the sentence from left to right
Our contribution:
• A novel, more human-interpretable model that captures the

motivation above while achieving state-of-the-art
• CODE RELEASED AT https://github.com/chenxi116/
TF-phrasecut-public
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• Slightly adapted from (Hu et al. 2016)
• Encode image with a fully convolutional network
• Encode referring expression with an LSTM
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• Features from two modalities are concatenated
• Two more convolution layers as pixel-wise binary classifier
• Sentence-to-image; Independent encoding of two modalities

RECURRENT MULTIMODAL INTERACTION
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• Novel two-layer recurrent neural network architecture
• Lower level (LSTM):

– Model the progression of semantics
– Same LSTM as the one used in the baseline model

• Upper level (mLSTM):
– Model the progression of segmentation beliefs
– Input is the concatenation of image features, spatial co-

ordinates, LSTM hidden states, and word embeddings
– Same mLSTM cell is shared among all locations
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– Equivalent to a convolutional LSTM with 1× 1 kernel

• Word-to-image scheme; Early fusion of expression and image

QUALITATIVE RESULTS

ANALYSIS & CONCLUSION
Performance Evaluation by Mean IOU:

G-Ref UNC UNC+ RG
val val testA testB val testA testB test

(Hu et al. 2016) 28.14 - - - - - - 48.03

R+LSTM 28.60 38.74 39.18 39.01 26.25 26.95 24.57 54.01
R+RMI 32.06 39.74 39.99 40.44 27.85 28.69 26.65 54.55

R+LSTM+DCRF 28.94 39.88 40.44 40.07 26.29 27.03 24.44 55.90
R+RMI+DCRF 32.85 41.17 41.35 41.87 28.26 29.16 26.86 56.61

D+LSTM 33.08 43.27 43.60 43.31 28.42 28.57 27.70 56.83
D+RMI 34.40 44.33 44.74 44.63 29.91 30.37 29.43 57.34

D+LSTM+DCRF 33.11 43.97 44.25 44.07 28.07 28.29 27.44 58.20
D+RMI+DCRF 34.52 45.18 45.69 45.57 29.86 30.48 29.50 58.73

More Robust to Longer Expressions:

Dataset Shortest 1/4 Shorter 1/4 Longer 1/4 Longest 1/4

G-Ref 9.44% 12.37% 12.17% 14.81%
UNC 1.94% 3.10% 3.15% 4.19%

UNC+ 3.84% 5.67% 12.55% 16.85%
RG 0.69% 0.90% 1.82% 2.10%
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Visualizing Intermediate Segmentation Beliefs:

Conclusion:
• We propose a novel two-layer recurrent neural network archi-

tecture that jointly models the progression of semantics and
the progression of segmentation beliefs

• We achieve new SOTA on all large-scale benchmark datasets
• We visualize and interpret the internal segmentation beliefs


