Adversarial Attacks Beyond the Image Space

Xiaohui Zeng, Chenxi Liu, Yu-Siang Wang, Weichao Qiu, Lingxi Xie, Yu-Wing Tai, Chi Keung Tang, Alan Yuille 06/19/2019

3D scene

3D scene

2D image

Adversarial Attacks on 2D Image

- Can the network fail if we slightly modify 2D pixel values?
 - Yes!

- Can the network fail if we slightly modify 2D pixel values?
 - Yes!
- Should we be concerned about them in the real world?
 - Well, sort of.

- Can the network fail if we slightly modify 2D pixel values?
 - Yes!
- Should we be concerned about them in the real world?
 - Well, sort of.
 - Potentially dangerous.
 - But require position-wise albedo change, which is unrealistic to implement.

Adversarial Attacks on 3D Scene

Adversarial Attacks on 3D Scene

- Can the network fail if we slightly modify 2D pixel values?
 - Yes!
- Should we be concerned about them in the real world?
 - Well, sort of.
 - Potentially dangerous.
 - But require position-wise albedo change, which is unrealistic to implement.

- Can the network fail if we slightly modify 3D physical parameters?
 - Well, let's find out :)

- Can the network fail if we slightly modify 2D pixel values?
 - o Yes!
- Should we be concerned about them in the real world?
 - Well, sort of.
 - Potentially dangerous.
 - But require position-wise albedo change, which is unrealistic to implement.

- Can the network fail if we slightly modify 3D physical parameters?
 - Well, let's find out :)
- Should we be concerned about them in the real world?
 - If they exist, then we should be much more concerned than before, as they are much more easily realized.

3D scene

2D image label

Physical Space

Image Space

Output Space

3D scene

2D image

label

Physical Space

Image Space Output Space

Differentiable Renderer

- White box attack
- Use gradient descent

Differentiable Renderer

- White box attack
- Use gradient descent

Non-Differentiable Renderer

- Black box attack
- Use finite difference for the non-differentiable component

Differentiable Renderer	
Non-Differentiable Renderer	

	Object Classification (ShapeNet)	
Differentiable Renderer		
Non-Differentiable Renderer	M	

	Object Classification (ShapeNet)	Visual Question Answering (CLEVR)	
Differentiable Renderer			
Non-Differentiable Renderer	Nt.		

Johnson, Justin, et al. "Clevr: A diagnostic dataset for compositional language and elementary visual reasoning." In CVPR. 2017.

	Object Classification (ShapeNet)	Visual Question Answering (CLEVR)	
Differentiable Renderer	#1	#2	
Non-Differentiable Renderer	#3	#4	

#1: Differentiable + Object Classification

- Differentiable renderer: Liu et al, 2017
 - surface normal
 - illumination
 - material

#1: Differentiable + Object Classification

- Differentiable renderer: Liu et al, 2017
 - surface normal
 - illumination
 - material
- Can image space adversarial noise be explained by physical space?
 - No for 97% of the case

#1: Differentiable + Object Classification

- Differentiable renderer: Liu et al, 2017
 - surface normal
 - illumination
 - material
- Can image space adversarial noise be explained by physical space?
 - No for 97% of the case
- Attacking image space vs physical space:

	Image	Surface N.	Illumination	Material	Combined
Attack success %	100.00	89.27	29.61	18.88	94.42

#2: Differentiable + VQA

• Attacking image space vs physical space:

	Image	Surface N.	Illumination	Material	Combined
Attack success %	96.33	83.67	48.67	8.33	90.67

#3: Non-Differentiable + Object Classification

- Non-Differentiable renderer: Blender
 - o color
 - rotation
 - translation
 - lighting

#3: Non-Differentiable + Object Classification

- Non-Differentiable renderer: Blender
 - color
 - rotation
 - translation
 - lighting
- How often does physical space attack succeed?
 - ~10% of the time
 - But highly interpretable:

Rotate (-2.9, 9.4, 2.5) \times 10⁻³ rad along \times , \times , \times Move (2.0, 0.0, 0.2) \times 10⁻³ along \times , \times , \times Change RGB color by (9.1, 5.4, -4.8) \times 10⁻² Adjust light source by -0.3 Change the light angle by (9.5, 5.4, 0.6) \times 10⁻²

าelmet

#4: Non-Differentiable + VQA

- How often does physical space attack succeed?
 - °20% of the time
 - But highly interpretable:

Q:How many other purple objects have the same shape as the purple matte object?

.

Move light source by (0.0, 3.0, -1.0, -1.7) x 10⁻² Rotate object 2 by (-1.6, 4.1) x 10⁻² Move object 3 by (-3.1, 6.2) x 10⁻² Change RGB of object 9 by (-3.7, -1.1, -4.5) x 10⁻²

000

A: 0

A: 1

Conclusion

- We study adversarial attacks beyond the image space on the physical space
- Such attacks (via rotation, translation, color, lighting etc) can still succeed
- They pose more serious threat

Thank you!