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● Hit Enter, sit back and relax, come back the next day for a 
high-quality machine learning solution ready to be delivered
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Where Are Hyperparameters?

● We usually think of those related to learning rate scheduling

● But for a neural network, many more lie in its architecture:

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. "Going 
deeper with convolutions." In CVPR. 2015. 8



Neural Architecture Search (NAS)

● Can we design network architectures automatically, instead of 
relying on expert experience and knowledge?

● Broadly, existing NAS literatures fall into two main categories:

○ Evolutionary Algorithms (EA)
○ Reinforcement Learning (RL)
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Evolutionary Algorithms for NAS

(0, 1, 0, 1): 0.85
(2, 0, 3, 1): 0.84
(5, 1, 3, 3): 0.91
(0, 2, 0, 6): 0.92

…
(0, 7, 3, 5): 0.82

Best candidates
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Evolutionary Algorithms for NAS

(0, 1, 0, 1): 0.85
(2, 0, 3, 1): 0.84
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Evolutionary Algorithms for NAS

(5, 5, 3, 3): 0.90
(0, 2, 1, 6): 0.91
(5, 1, 3, 3): 0.91
(0, 2, 0, 6): 0.92

…
(0, 1, 0, 2): 0.86

Best candidates

(0, 1, 0, 2): 0.86
(2, 0, 4, 1): 0.83
(5, 5, 3, 3): 0.90
(0, 2, 1, 6): 0.91

…
(0, 6, 3, 5): 0.80

New candidates

merge
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Reinforcement Learning for NAS

LSTM Agent

0, 1, 0, 2! computing...

GPU/TPU
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Reinforcement Learning for NAS

LSTM Agent

updating... 0.86!

GPU/TPU
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Reinforcement Learning for NAS

LSTM Agent

5, 5, 3, 3! computing...

GPU/TPU

16



Reinforcement Learning for NAS

LSTM Agent

updating... 0.90!

GPU/TPU
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Success and Limitation

Zoph, Barret, and Quoc V. Le. "Neural architecture search with reinforcement learning." In ICLR. 2017.
Zoph, Barret, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. "Learning transferable architectures for scalable image recognition." In CVPR. 2018.

● NASNet from Zoph et al. (2018) already surpassed human designs 
on ImageNet under the same # Mult-Add or # Params

● But very computationally intensive:

○ Zoph & Le (2017): 800 K40 for 28 days
○ Zoph et al. (2018): 500 P100 for 5 days
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Our Goal

Zoph, Barret, and Quoc V. Le. "Neural architecture search with reinforcement learning." In ICLR. 2017.
Zoph, Barret, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. "Learning transferable architectures for scalable image recognition." In CVPR. 2018.

● NASNet from Zoph et al. (2018) already surpassed human designs 
on ImageNet under the same # Mult-Add or # Params

● But very computationally intensive:

○ Zoph & Le (2017): 800 K40 for 28 days
○ Zoph et al. (2018): 500 P100 for 5 days

● Our goal: Speed up NAS by proposing an alternative algorithm
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Taxonomy

Block Cell Network
construct construct
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● Similar to Zoph et al. (2018)

Zoph, Barret, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. "Learning transferable architectures for scalable image recognition." In CVPR. 2018.



Cell -> Network

● Once we have a cell structure, we stack it 
up using a predefined pattern

● A network is fully specified with: 
○ Cell structure
○ N (number of cell repetition)
○ F (number of filters in the first cell)

● N and F are selected by hand to control 
network complexity
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Block -> Cell

Cell

● Each cell consists of B=5 blocks

● The cell’s output is the concatenation of 
the 5 blocks’ outputs

concat

H3 H4 H5H2H1

H

B=5 blocks
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Block

Within a Block

Input 1

Operator 1

Input 2

Operator 2

Combination

Hb● Input 1 is transformed by Operator 1

● Input 2 is transformed by Operator 2

● Combine to give block’s output
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Block

Within a Block

Input 1

Operator 1

Input 2

Operator 2

Combination

Hb● Input 1 and Input 2 may select from:

○ Previous cell’s output
○ Previous-previous cell’s output
○ Previous blocks’ output in current cell
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Block

Within a Block

Input 1

Operator 1

Input 2

Operator 2

Combination

Hb● Operator 1 and Operator 2 may select from:

○ 3x3 depth-separable convolution
○ 5x5 depth-separable convolution
○ 7x7 depth-separable convolution
○ 1x7 followed by 7x1 convolution
○ Identity
○ 3x3 average pooling
○ 3x3 max pooling
○ 3x3 dilated convolution
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Block

Within a Block

Input 1

Operator 1

Input 2

Operator 2

Combination

Hb● Combination is element-wise addition
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Architecture Search Space Summary

● One cell may look like:

● 22 * 82 * 1 *
32 * 82 * 1 *
42 * 82 * 1 *
52 * 82 * 1 *
62 * 82 * 1 =
1014 possible 
combinations!

Hc

Hc-1

Hc-2

...

sep
7x7

max
3x3

sep
5x5

sep
3x3

sep
3x3

max
3x3

iden
tity

sep
3x3

sep
5x5

max
3x3

+ + + +

+

concat

28



Progressive 
Neural 
Architecture 
Search Algorithm

29



Main Idea: Simple-to-Complex Curriculum

● Previous approaches directly work with the 1014 search space

● Instead, what if we progressively work our way in:
○ Begin by training all 1-block cells. There are only 256 of them!
○ Their scores are going to be low, because of they have fewer blocks...
○ But maybe their relative performances are enough to show which cells 

are promising and which are not.
○ Let the K most promising cells expand into 2-block cells, and iterate!
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Progressive Neural Architecture Search: First Try

…

K * B2 (~105)

B1 (256)

… … …

enumerate, train, select top K

expand promising 2-block cells

train these 2-block cells

● Problem: for a reasonable K, too many 2-block candidates to train

○ It is “expensive” to obtain the performance of a cell/string
○ Each one takes hours of training and evaluating
○ Maybe can afford 102, but definitely cannot afford 105
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Performance Prediction with Surrogate Model

● Solution: train a “cheap” surrogate model that predicts the final 
performance simply by reading the string

○ The data points collected in the “expensive” way are exactly 
training data for this “cheap” surrogate model

● The two assessments are in fact used in an alternate fashion:

○ Use “cheap” assessment when candidate pool is large (~105)
○ Use “expensive” assessment when it is small (~102)

predictor(0, 2, 0, 6) 0.92
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Performance Prediction with Surrogate Model

● Desired properties of this surrogate model/predictor:

○ Handle variable-size input strings
○ Correlate with true performance
○ Sample efficient

● We try both a MLP-ensemble and a RNN-ensemble as predictor

○ MLP-ensemble handles variable-size by mean pooling
○ RNN-ensemble handles variable-size by unrolling a different 

number of times
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Progressive Neural Architecture Search

…

B1 (256)

enumerate and train all 1-block cells

predictor
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Progressive Neural Architecture Search

…

B1 (256)

enumerate and train all 1-block cells

train predictor

predictor
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Progressive Neural Architecture Search

…
K * B2 (~105)

B1 (256)

… … …

enumerate and train all 1-block cells

expand promising 2-block cells

train predictor
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Progressive Neural Architecture Search

…
K * B2 (~105)

B1 (256)

… … …

enumerate and train all 1-block cells

expand promising 2-block cells

train predictor

…

K (~102)predictor apply predictor to select top K
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Progressive Neural Architecture Search
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K * B2 (~105)

B1 (256)
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enumerate and train all 1-block cells
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Progressive Neural Architecture Search

…
K * B2 (~105)

B1 (256)

… … …

enumerate and train all 1-block cells

expand promising 2-block cells

train predictor

…

K (~102)predictor apply predictor to select top K

train the selected 2-block cells

finetune predictor
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Progressive Neural Architecture Search

…
K * B2 (~105)

B1 (256)

… … …

enumerate and train all 1-block cells

expand promising 2-block cells

train predictor

…
K * B3 (~105)

K (~102)predictor

… … …

apply predictor to select top K

train the selected 2-block cells

finetune predictor

expand promising 3-block cells
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Progressive Neural Architecture Search

…
K * B2 (~105)

B1 (256)

… … …

enumerate and train all 1-block cells

expand promising 2-block cells

train predictor

…
K * B3 (~105)

K (~102)

…

predictor

… … …

apply predictor to select top K

train the selected 2-block cells

finetune predictor

expand promising 3-block cells

apply predictor to select top K
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Experiments 
and Results
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The Search Process

● We performed Progressive Neural Architecture Search 
(K = 256) on CIFAR-10

● Each model (N = 2, F = 24) was trained for 20 epochs 
with cosine learning rate

● First big question: Is our search more efficient?
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The Search Process: 5x Speedup
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The Search Process: PNASNet-1, 2, 3
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The Search Process: PNASNet-4
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The Search Process: PNASNet-5
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After The Search

● Select the best 5-block cell structure; increase N and F

● Train and evaluate on both CIFAR-10 and ImageNet

● Second big question: How competitive is the found cell structure 
on benchmark datasets?
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After The Search: CIFAR-10

Model # Params Error Rate Method Search Cost

NASNet-A [1] 3.3M 3.41 RL 21.4 - 29.3B

NASNet-B [1] 2.6M 3.73 RL 21.4 - 29.3B

NASNet-C [1] 3.1M 3.59 RL 21.4 - 29.3B

Hier-EA [2] 15.7M 3.75 ± 0.12 EA 35.8B

AmoebaNet-B [3] 2.8M 3.37 ± 0.04 EA 63.5B

AmoebaNet-A [3] 3.2M 3.34 ± 0.06 EA 25.2B

PNASNet-5 3.2M 3.41 ± 0.09 SMBO 1.0B
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[1] Zoph, Barret, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. "Learning transferable architectures for scalable image recognition." In CVPR. 2018.
[2] Liu, Hanxiao, et al. "Hierarchical representations for efficient architecture search." In ICLR. 2018.
[3] Real, Esteban, et al. "Regularized evolution for image classifier architecture search." arXiv preprint arXiv:1802.01548 (2018).



After The Search: ImageNet (Mobile)

Model # Params # Mult-Add Top 1 Top 5

MobileNet [1] 4.2M 569M 70.6 89.5

ShuffleNet [2] 5M 524M 70.9 89.8

NASNet-A [3] 5.3M 564M 74.0 91.6

AmoebaNet-B [4] 5.3M 555M 74.0 91.5

AmoebaNet-A [4] 5.1M 555M 74.5 92.0

AmoebaNet-C [4] 6.4M 570M 75.7 92.4

PNASNet-5 5.1M 588M 74.2 91.9
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[1] Howard, Andrew G., et al. "Mobilenets: Efficient convolutional neural networks for mobile vision applications." arXiv preprint arXiv:1704.04861 (2017).
[2] Zhang, ,Xiangyu, et al. "Shufflenet: An extremely efficient convolutional neural network for mobile devices." arXiv preprint arXiv:1707.01083 (2017).
[3] Zoph, Barret, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. "Learning transferable architectures for scalable image recognition." In CVPR. 2018.
[4] Real, Esteban, et al. "Regularized evolution for image classifier architecture search." arXiv preprint arXiv:1802.01548 (2018).



After The Search: ImageNet (Large)

Model # Params # Mult-Add Top 1 Top 5

ResNeXt-101 [1] 83.6M 31.5B 80.9 95.6

Squeeze-Excite [2] 145.8M 42.3B 82.7 96.2

NASNet-A [3] 88.9M 23.8B 82.7 96.2

AmoebaNet-B [4] 84.0M 22.3B 82.3 96.1

AmoebaNet-A [4] 86.7M 23.1B 82.8 96.1

AmoebaNet-C [4] 155.3M 41.1B 83.1 96.3

PNASNet-5 86.1M 25.0B 82.9 96.2
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[1] Xie, Saining, et al. "Aggregated residual transformations for deep neural networks." In CVPR. 2017.
[2] Hu, Jie, Li Shen, and Gang Sun. "Squeeze-and-excitation networks." In CVPR. 2018.
[3] Zoph, Barret, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. "Learning transferable architectures for scalable image recognition." In CVPR. 2018.
[4] Real, Esteban, et al. "Regularized evolution for image classifier architecture search." arXiv preprint arXiv:1802.01548 (2018).



Conclusion

● We propose to search neural network architectures in order of 
increasing complexity, while simultaneously learning a 
surrogate function to guide the search.

● PNASNet-5 achieves state-of-the-art level accuracies on 
CIFAR-10 and ImageNet, while being 5 to 8 times more efficient 
than leading RL and EA approaches during the search process.
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Code and Model Release

● We have released PNASNet-5 trained on ImageNet

○ Both Mobile and Large
○ Both TensorFlow and PyTorch
○ SOTA on ImageNet amongst all publicly available models

https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/chenxi116/PNASNet.TF
https://github.com/chenxi116/PNASNet.pytorch
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Extensions

● Our PNAS algorithm has been applied on related tasks:
○ PPP-Net [1] and DPP-Net [2]: Pareto-optimal architectures
○ Auto-Meta [3]: Meta-learning

● PNAS did not address sharing among child models:
○ ENAS [4] and DARTS [5] showed its importance to speedup
○ EPNAS [6] combined ENAS and PNAS for further speedup

[1] Dong, Jin-Dong, et al. "PPP-Net: Platform-aware Progressive Search for Pareto-optimal Neural Architectures." ICLR 2018 Workshop.
[2] Dong, Jin-Dong, et al. "DPP-Net: Device-aware Progressive Search for Pareto-optimal Neural Architectures." ECCV 2018.
[3] Kim, Jaehong, et al. "Auto-Meta: Automated Gradient Based Meta Learner Search." arXiv preprint arXiv:1806.06927 (2018).
[4] Pham, Hieu, et al. "Efficient Neural Architecture Search via Parameter Sharing." ICML 2018.
[5] Liu, Hanxiao, Karen Simonyan, and Yiming Yang. "DARTS: Differentiable Architecture Search." arXiv preprint arXiv:1806.09055 (2018).
[6] Perez-Rua, Juan-Manuel, Moez Baccouche, and Stephane Pateux. "Efficient Progressive Neural Architecture Search." BMVC 2018. 54



Thank You
Poster session 3B (Wednesday, September 12, 2:30pm - 4:00pm)

@chenxi116      https://cs.jhu.edu/~cxliu/
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