Are Labels Necessary tor
Neural Architecture Searcny?

Chenxi Liu, Piotr Dollar, Kaiming He, Ross Girshick, Alan Yuille, Saining Xie

Spotlight @ECCV 2020
(Long Video)



Designing neural architectures

In Artificial Intelligence, Neural Architecture
Search has always been supervised..
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Designing neural architectures

s ., panda) “Nature Architecture Semantic labels
' Search” started emerged

Artificial ',
Intelligence |
. ,

But in Natural Intelligence, “Nature Architecture
Search” started long before semantic labels
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Designing neural architectures

What neural architectures will we find?

Will they look similar to those on the left?
Will they work as well as those on the left?
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- Supervised

Defining Unsupervised NAS (UnNAS)

Search Phase

(Supervised) NAS : 4 search
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- Supervised

Defining Unsupervised NAS (UnNAS)

Search Phase Fval Phase

(Supervised) NAS
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- Supervised

Defining Unsupervised NAS (UnNAS)

- Unsupervised

Search Phase Fval Phase
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Unsupervised NAS (ours)

(Supervised) NAS




- Supervised

Defining Unsupervised NAS (UnNAS)

- Unsupervised

Search/Training Phase  Eval Phase

Unsupervised (feature) learning 7 finetune

Unsupervised NAS (ours)
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Defining Unsupervised NAS (UnNAS)

Unsupervised ( »)

Supervised learning Unsupervised (feature) learning

Learning weight @ @

(Supervised) NAS 'Unsupervised NAS (ours)
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Signals to exploit
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Signals to exploit

In this project, we rely on self-supervised objectives
e We will use “unsupervised” and “self-supervised” interchangeably

e These objectives were originally developed to transter learned weights
e \Ve study their ability to transfer learned architectures instead
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Signals to exploit

Using these 3 self-supervised objectives, we conduct two sets of experiments of complementary nature:
e Sample-based experiments

e Search-based experiments
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Sample-based experiments
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Sample-based experiments

1. Sample 500 architectures

O\




Sample-based experiments

1. Sample 500 architectures

2. Train them from scratch on
different tasks; get accuracy
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Sample-based experiments
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Rot: [93.0, 93.1, 93.2, 93.3]

Cls: [92.1,92.2,92.3,92.4]

e

N

Jig: [76.0,76.1,76.2, 76.3]

1. Sample 500 architectures

2. Train them from scratch on
different tasks; get accuracy

3. Measure rank correlation
between unsupervised and
supervised

Do above on 2 datasets (CIFAR-
10, ImageNet) and 2 search
spaces (DARTS, NAS-Bench-101)
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Sample-based experiments

facebook Artificial Intelligence

1. Sample 500 architectures

Rot: [93.0, 93.1, 93.2, 93.3] 2. Train them from scratch on
different tasks; get accuracy

3. Measure rank correlation
P between unsupervised and
supervised

Cls: [92.1,92.2,92.3,92.4] Do above on 2 datasets (CIFAR-

D D 10, ImageNet) and 2 search
spaces (DARTS, NAS-Bench-101)

Jig: [76.0,76.1,76.2, 76.3]

|

. & Each network trained and evaluated individually

\ﬁ: Can only afford a small, random subset or entire search space
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Sample-based experiments

Architecture rankings produced with and without labels are highly correlated on the same dataset
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Sample-based experiments

Architecture rankings produced with and without labels are highly correlated on the same dataset

ImageNet-1K
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Sample-based experiments

Architecture rankings produced with and without labels are highly correlated on the same dataset

CIFAR-10 ImageNet-1K
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Sample-based experiments

Architecture rankings produced with and without labels are highly correlated even across datasets
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Search-based experiments
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Search-based experiments

NAS Algorithm 1. Take a NAS algorithm (DARTS)

Objective:

9]
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Search-based experiments

NAS Algorithm 1. Take a NAS algorithm (DARTS)

2. Run it with an unsupervisead
search objective

Objective: Rot Co Jig

O \
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Search-based experiments

ImageNet-1K
accuracy:

Cityscapes
mloU:
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Rot

/5.7
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Col
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/5.9

/3.1

1. Take a NAS algorithm (DARTS)

2. Run it with an unsupervisead

search objective

3. Train and evaluate the searched

architecture; compare
VS unsupervised

Do above on 3 search datasets
(ImageNet-TK, ImageNet-22K,
Cityscapes) and 2 target datasets +
tasks (ImageNet-1K classification,
Cityscapes semantic segmentation)
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Search-based experiments

ImageNet-1K
accuracy:

Cityscapes
mloU:
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Rot Col Jig 1. Take a NAS algorithm (DARTS)

2. Run it with an unsupervisead
search objective

3. Train and evaluate the searched
architecture; compare
0 VS unsupervised

Do above on 3 search datasets
(ImageNet-TK, ImageNet-22K,
Cityscapes) and 2 target datasets +
tasks (ImageNet-1K classification,
Cityscapes semantic segmentation)

/5.7 /5.9 /5.9

/2.9 /3.6 /3.1

& Explore the entire search space

'U% - Training dynamics mismatch between search phase and eval phase
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Search-based experiments

UNNAS:
e s better than the commonly used CIFAR-10 supervised proxy
e iscomparable to (supervised) NAS across search tasks and datasets
e can even outperform the state-of-the-art (75.8) which uses a more sophisticated algorithm

ImageNet classiftication
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Search-based experiments

UNNAS:
e s better than the commonly used CIFAR-10 supervised proxy
e s comparable to (supervised) NAS across search tasks and datasets
e can even be clearly better than supervised NAS

Cityscapes semantic segmentation

Search on IN1K | Evaluate on Cityscapes Search on IN22K | Evaluate on Cityscapes Search on Cityscapes | Evaluate on Cllscapes
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To pertorm NAS successtully,
abels are not necessary



Implications

Reduce the labeling requirement in existing AutoML products
-nable the possibility of searching for architectures on datasets too large to label

Unlabeled | abeled
—_—PDr—mDm——A—_—_—_o—Y—YYAoeY _—_A—

Current
AutoML I :
Products Do NAS; Eval

Train weights

FUTURE | | | |

AUTONL | | |
PRODUCTS Do UnNAS; Train weights Finetune arch. Eval

and/or weights

facebook Artificial Intelligence



Thank you!



